شناسایی عناصر برنامهٔ درسی استم (علوم، فناوری، مهندسی، ریاضیات) در دورهٔ ابتدایی کشور ایران: رویکردی سنتزپژوهانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری برنامه‌ریزی درسی، دانشکدۀ‌ روان‌شناسی و علوم تربیتی، دانشگاه تهران، تهران، ایران

2 دانشیار گروه روش‌ها و برنامه‌های درسی، دانشکدۀ‌ روان‌شناسی و علوم تربیتی، دانشگاه تهران، تهران، ایران

چکیده

هدف پژوهش حاضر شناسایی عناصر برنامهٔ درسی استم در دورهٔ ابتدایی است. داده‌ها براساس پژوهشی کیفی از نوع سنتزپژوهی و با استفاده از گام‌های هفت‌گانهٔ نیومن و گاف (2020) جمع‌آوری شده‌اند. قلمروِ پژوهش شامل همهٔ مقالات علمی معتبر مرتبط با موضوع در بازهٔ زمانی ۲۰01-2023 است که در پایگاه‌های تخصصی و علمی داخل و خارج کشور ثبت شده‌اند و از میان آن‌ها، پس از چند مرحله غربالگری و معیار مهارت‌های ارزیابی حیاتی، ۴۰ منبع به‌صورت هدفمند انتخاب و کدگذاری و تحلیل شدند. همچنین، عناصر برنامهٔ درسی استم براساس الگوی تارعنکبوتی اکر بررسی شد. نتایج پژوهش نشان داد که منطق رویکرد استم یادگیرنده‌محور و همسو با نظریهٔ سازنده‌گرایی است که به‌دنبال ساختن دیدی کل‌نگر در دانش‌آموز به‌منظور درک و فهم ارتباط بین چهار حوزهٔ علوم، فناوری، مهندسی و ریاضیات است. هدف این رویکرد، کسب مهارت‌های قرن ۲۱ و پرورش دانش‌آموزانی است که با مهارت تفکر و حل ‌مسئله بتوانند بر مسائل واقعی دنیای کنونی فائق آیند و راهکارهای مؤثر ارائه دهند. اجرای این روش، نیازمند تغییر نگرش معلمان از رویکردهای سنتی به نوین و آموزش و آماده‌سازی معلمان است. افزون‌براین، اجرای گام‌به‌گام و تدریجی این رویکرد، حتی در ساختار کنونی، امکان‌پذیر است. درنهایت، پس ‌از معرفی عناصر برنامهٔ ‌درسی، پیشنهادهایی برای اجرای آن در دورهٔ ابتدایی ارائه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the elements of the STEM (Science, Technology, Engineering, Mathematics) curriculum in the primary education of Iran: a synthesis-research approach

نویسندگان [English]

  • Farzāne Askary 1
  • Mohammad Javādipour 2
1 PhD Candidate in Curriculum Planning, University of Tehran, Tehran, Iran
2 (PhD), University of Tehran, Tehran, Iran
چکیده [English]

The aim of the current research was to identify the elements of the STEM curriculum at the primary school level. Data were collected based on a qualitative research of the synthesis type, using the seven steps of Newman and Gough (2020). The research population included all the valid scientific articles related to the topic in the period between 2001-2023, which have been registered in the specialized and scientific databases inside and outside the country. After several stages of screening and using the Critical Appraisal Skills Program (CASP) criteria, 40 sources were purposefully selected, coded and analyzed, and the elements of the STEM curriculum were analyzed based on Aker's spider web model. The results showed that the logic of the STEM approach is learner-oriented and in line with the theory of constructivism, which seeks to create a holistic view in the student in order to understand the relationship between the four fields of Science, Technology, Engineering and Mathematics. The aim of this approach is to acquire the skills of the 21st century, to train students who can overcome the real problems of the current world with thinking and problem solving skills and also to provide effective solutions. The implementation of this method requires a change in the teachers' attitudes from traditional to modern approaches and training and preparation of teachers, which makes possible the step-by-step and gradual implementation of this approach, even in the current structure. Finally, after introducing the elements of such a curriculum, suggestions were made for its implementation at the primary education level.

کلیدواژه‌ها [English]

  • Curriculum Elements
  • STEM Approach
  • Primary Education
  • Synthesis
  • احمدی، افسانه. (1399). بررسی برنامه تلفیقی بر خلاقیت دانش‌آموزان ابتدایی. پژوهش‌های معاصر در علوم و تحقیقات، ۲(۱۷)، 1-9.
  • اصغری اصل سردرود، مریم.، ملکی آوارسین، صادق.، بقایی، حسین و یاری حاج‌عطالو، جهانگیر. (1401). مطالعه‌ی ویژگی‌های عناصر برنامه‌ی درسی آموزش علوم مبتنی بر روش استیم. نوآوری‌های آموزشی، ۲۱(۸۴)، 105-132.
  • رضایی، مریم.، امام‌جمعه، محمدرضا.، احمدی، غلامعلی.، عصاره، علیرضا و نیکنام، زهرا. (1399). طراحی الگوی مفهومی برنامه‌درسی تلفیقی استم در دوره ابتدایی کشور ایران. مطالعات برنامه‌درسی ایران، ۱۵(۵۹)، 63-92.
  • سجادی، ناعمه. (۱۳۹۶). مطالعه چگونگی بکارگیری هنر در آموزش ریاضیات مدرسه‌ای بر اساس روش آموزش استیم [پایان‌نامة کارشناسی ارشد منتشرنشده]. دانشگاه فردوسی.
  • طهماسب زاده، داوود.، فتحی‌آذر، اسکندر و صنیعی، مریم. (۱۳۹۸). مطالعه‌ی پدیدارشناختی تجارب و ادراک معلمان دوره ابتدایی از برنامه‌درسی علوم تلفیقی. پژوهش‌های برنامه‌ی درسی، ۹(۱۷)، 113-139.
  • کهندل، مرضیه. (1398). استم چیست. رشد آموزش ابتدایی، ۲۳(۱)، ۳۲-۳۳.
  • Adams, A.E., Miller, B., Saul, M., & Pegg, J. (2014). Supporting Elementary Pre-Service Teachers to Teach STEM Through Place-Based Teaching and Learning Experiences, Electronic Journal of Science Education, 18(5). https://files.eric.ed.gov/fulltext/EJ1188278.pdf
  • Ahmad, J., & Siew, N. M. (2021). Curiosity towards STEM Education: A Questionnaire for Primary School Students. Journal of Baltic Science Education, 20(2), 289-304. https://doi.org/10.33225/jbse/21.20.289.
  • Akker, J. (2003). Curriculum perspectives: An introduction. In Van den Akker, J., Kuiper, W., & Hameyer, U. (Eds.), Curriculum Landscapes and Trends (pp. 1-14). Kluwer Academic Publishers.
  • Akiri, E., Matathia, H., & Judy Dory, Y. (2021). Teaching and assessment methods: STEM teachers’ perceptions and implementation, EURASIA Journal of Mathematics, Science and Technology Education, 17(6), 2-22. https://doi.org/10.29333/ejmste/10882
  • Akran, S.K., & Asiroglu, S. (2018). Perceptions of teachers towards the STEM education and the constructivist education approach: Is the constructivist education approach preparatory to the STEM education, Universal Journal of Educational Research, 6(10), 2175-2186.
  • Albion, P. R., & Spence, K. G. (2013). " Primary Connections" in a Provincial Queensland School System: Relationships to Science Teaching Self-Efficacy and Practices. International Journal of Environmental and Science Education, 8(3), 501-520.
  • Altan, E.B., Ucuncuoglu, I., & Ozturk, N. (2019). Preparation of Out-of-School Learning Environment based on Science, Technology, Engineering, and Mathematics Education and Investigating its Effects, Science Education International, 30(2), 138-148.
  • Amin, M., Rahmawati, Y., Sudrajat, A., & Mardiah, A. (2022). Enhancing Primary School Students’ Critical Thinking Skills through the Integration of Inquiry-Based STEM Approach on Teaching Electricity in Science Learning. Journal of Physics: Conference Series, 2377(2022), Article 012090 . doi:10.1088/1742-6596/2377/1/012090.
  • Amin, M., Rahmawati, Y., Sudrajat, A., & Mardiah, A. (2022, November). Enhancing Primary School Students’ Critical Thinking Skills through the Integration of Inquiry-Based STEM Approach on Teaching Electricity in Science Learning. Journal of Physics: Conference Series, 2377, Article 012090. doi:10.1088/1742-6596/2377/1/012090
  • Apple, M. W. (2022). STEM, Educational Transformation, and the Politics of Race. Educational Policy, 36(3), 748–757. https://doi.org/10.1177/0895904820981937
  • Australian Curriculum. (2021). STEM in Australian Curriculum. https://www.australiancurriculum.edu.au/resources/stem
  • Aydin, G. (2020). Prerequisites for elementary school teachers before practicing STEM education with students: A case study. Eurasian Journal of Educational Research, 20(88), 1-40. https://dergipark.org.tr/en/pub/ejer/issue/57483/815278#article_cite
  • Blackley, S., Sheffield, R., Maynard, N., Koul, R., & Walker, R. (2017). Makerspace and reflective practice: Advancing pre-service teachers in STEM education. Australian Journal of Teacher Education (Online), 42(3), 22-37. http://dx.doi.org/10.14221/ajte.2017v42n3.2.
  • Brown, R., Ernst, J., Clark, A., DeLuca, B. & Kelly, D. (Eds.). (2017). STEM curricula. Technology and Engineering Teacher, 77(2), 26-29.
  • Cunningham, C. M., & Higgins, M. (2015). Engineering for Everyone. Educational Leadership, 72(4), 42-47. https://eric.ed.gov/?id=EJ1047517.
  • Catalano, A., Asselta, L., & durkin, A. (2019). Exploring the relationship between science content knowledge and science teaching self-efficacy among elementary teachers, Journal of Education (IAFOR), 7(1), 57-70.
  • Cayci, B., & Ornek, T. (2019). Effect of Stem-based activities conducted in science classes on various variables, Asian Journal of Education and Training, 5(1), 260-268
  • Cetin, A. (2020). Examining project-based STEM training in a primary school, International Online Journal of Education and Teaching (IOJET), 7(3), 811- 825. https://iojet.org/index.php/IOJET/article/view/761.
  • Cooper, H., & Hedges, L.V. (2009). Research synthesis as a scientific process. In H. Cooper, L. V. Hedges, & I. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 3-16). Russell Sage Foundation.
  • Chalmers, I., Hedges, L.V., Cooper, H. (2002). A brief history of research synthesis, Evaluation & the Health Professions, 25(1), 12-37.
  • CASP Qualitative Checklist. (2018). Critical Appraisal Skills Programme (CASP). Oxford. https://casp-uk.net/wp-content/uploads/2018/01/CASP-Qualitative-Checklist-2018.pdf.
  • Cabello, V. M., Martínez, M. L., Armijo, S., & Maldonado, L. (2021). Promoting STEAM learning in the early years: “Pequeños Científicos” Program. LUMAT: International Journal on Math, Science and Technology Education, 9(2), 33-62. https://doi.org/10.31129/LUMAT.9.2.1401.
  • Diaz, M.E. (2019). Exploring Latino preservice teachers‟ attitudes and beliefs about learning and teaching science: What are the critical factors? International Journal of Research in Education and Science (IJRES), 5(2), 574-586.
  • Dogana, A., & Kahramanb, E. (2021). The effect of STEM activities on the scientific creativity of middle school students, International Journal of Curriculum and Instruction, 13(2), 1241- 1266. http:// http:// creativecommons.org/ licenses/by-nc-nd/4.0/.
  • Dugger, E. W. (2010). Evolution of STEM in the United States. In H. Middleton (Ed), Knowledge in Technology Education, Proceedings of the 6th Biennial Conference on Technology Education Research (Vol 1., pp. 117-123). Griffith Institute of Educational Research.
  • Erdogmus, F. (2021). How do elementary childhood education teachers perceive robotic education in kindergarten? A qualitative study, Participatory Educational Research (PER), 8(2), 421-434. http://dx.doi.org/ 10.17275/per.21.47.8.2.
  • García-Carrillo, C., Greca, I. M., & Fernández-Hawrylak, M. (2021). Teacher perspectives on teaching the stem approach to educational coding and robotics in primary education. Education Sciences, 11(2), 64. https://doi.org/10.3390/educsci 11020064.
  • Gardner, M. (2017). Beyond the Acronym: Preparing Preservice Teachers for Integrated STEM Education. Ailacte journal, 14(1), 37-53.
  • Galanti, T. M., & Holincheck, N. (2022). Beyond content and curriculum in elementary classrooms: conceptualizing the cultivation of integrated STEM teacher identity, International Journal of STEM Education, 9, Article 43. http://creativecommons.org/licenses/by/4.0/.
  • Gallup, J., Coffland, D., & Schultz, K. (2021). Engaging students in STEM careers through the Mars rover challenge: bridging barriers through multimodal informal learning. Educational Research: Theory and Practice, 32(1), 54-61.
  • Gonzales, M., & Storti, R. (2019). Fostering a culture of innovation: A case study of elementary school principals in Costa Rica. International Journal of Education Policy & Leadership, 15(6). http://journals.sfu.ca/ ijepl/index. Php/ ijepl/article/view/821.
  • Gough, D. (2021). Appraising evidence claims. Review of Research in Education, 45(1), 1-26. https://doi.org/10.3102/0091732X20985072
  • Harlen, W., Bell, D., Devés, R., Dyasi, H., Garza, GF de la., Léna Pie., Millar, R., Reiss, M., Rowell, P., & Yu, W. (Eds.). (2015). Working with big ideas of science education. Science Education Programme (SEP) of IAP. https://www.ase.org.uk/download/file/fid/6740.
  • Hong, J.Ch., Ye, J.H., Ho, Y., & Ho, H. (2020). Developing an inquiry and hand- teaching model to guide STEAM lesson planning for kindergarten children, Journal of Baltic Science Education,19(6), 908-922. https://doi.org/10.33225/jbse/20.19.908.
  • Hudson, P., English, L., Dawes, L., King, D., & Baker, S. (2015). Exploring links between pedagogical knowledge practices and student outcomes in STEM education for primary schools. Australian Journal of Teacher Education (Online), 40(6), 134-151. http://ro.ecu.edu.au/ajte/vol40/iss6/8.
  • Karp, T., & Maloney, P. (2013). Exciting young students in grades K-8 about STEM through an afterschool robotics challenge. American Journal of Engineering Education4(1), 39-54. https://my.usfirst.org/scholarships/index.lasso.
  • Kayan-Fadlelmula, F., Sellami, A., Abdelkader, N., & Umer, S. (2022). A systematic review of STEM education research in the GCC countries: Trends, gaps and barriers. International Journal of STEM Education, 9, Article 2. https://doi.org/10.1186/s40594-021-00319-7
  • King, A. (2015). Reflecting on classroom practice: Spatial reasoning and simple coding. Australian Mathematics Teacher, The, 71(4), 21-27.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International, Journal of STEM Education, 3, Article 11. https://doi.org/10.1186/s40594-016- 0046-z.
  • Korucu, A. T., & Kabak, K. (2021). The Effects of STEM and Other Innovative Interdisciplinary Practices on Academic Success, Attitude, Career Awareness: A Meta-Synthesis Study, Learning and Teaching, 6(1), 27-39.
  • Kocabas, S., Ozfidan, B., & Burlbaw, L. (2020). American STEM Education in Its Global, National, and Linguistic Contexts, EURASIA Journal of Mathematics, Science and Technology Education, 16, Article em1810. https://www.ejmste.com/download/american-stem-education-in-its-global-national-and-linguistic-contexts-7773.pdf.
  • Laine, E., Veermansa, M., Gegenfurtnerb, A., & Veermans, K., (2020). Individual interest and learning in secondary school STEM education, Frontline Learning Research, 8(2), 90-108.
  • Lange, A., Robertson, L., Qiuju, T., Nivens, R., & Jamie, P. (2022). The effects of an early childhood-elementary teacher preparation program in STEM on pre-service teachers, EURASIA Journal of Mathematics, Science and Technology Education, 18(12), Article em2197. https://doi.org/10.29333/ejmste/12698.
  • Lee, D. C., & McIntyre, E. (2014). Where Is the “E” in STEM for Young Children? Engineering Design Education in an Elementary Teacher Preparation Program, Issues in teacher education, 23(1), 49-64.
  • Locke, E. (2009). Proposed model for a streamlined, cohesive, and optimized K-12 STEM curriculum with a focus on engineering. Journal of Technology Studies, 35(2), 23-35.
  • McClure, E. R., Guernsey, L. Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N., & Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. The Joan Ganz Cooney Center at Sesame Workshop. https://joanganzcooneycenter.org/wp-content/uploads/2017/01/jgcc_stemstartsearly_final.pdf.
  • Madden, L., Beyers, J., & O’Brien, S. (2016). The Importance of STEM Education in the Elementary Grades: Learning from Pre-service and Novice Teachers’ Perspectives, Electronic Journal of Science Education, 20(5), 2-18.
  • Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., & Fishbein, B. (2020). TIMSS 2019 International Results in Mathematics and Science. https://timssandpirls.bc.edu/timss2019/international-results/
  • National Governors Association. (2007). Innovation America: Building a science, technology, engineering and math agenda. https://files.eric.ed.gov/fulltext/ED496324.pdf.
  • Newman, M., & Gough, D. (2020). Systematic Reviews in Educational Research: Methodology, Perspectives and Application. In O. Zawacki-Richter, M. Kerres, S. Bedenlier, M. Bond, & K. Buntins (Eds.), Systematic Reviews in Educational Research: Methodology, Perspectives and Application (pp. 3–22). Springer Fachmedien. https://doi.org/10.1007/978-3-658-27602-7_1
  • Nurnberger-Haag, J., Wernet, J.L., & Benjamin, J.I. (2023). Gameplay in perspective: Applications of a conceptual framework to analyze features of mathematics classroom games in consideration of students’ experiences. IJEMST, 11(1), 267-303. https://doi.org/10.46328/ijemst.2328.
  • National Science Foundation. (2009). NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM). https://www.nsf.gov/pubs/2009/nsf09567/nsf09567.pdf
  • National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academies Press.
  • Okulu, H. Z., & Oguz-Unver, A. (2021). The Development and Evaluation of a Tool to Determine the Characteristics of STEM Activities. European Journal of STEM Education, 6(1), Article 06. https://doi.org/10.20897/ejsteme/10894.
  • Organization for Economic Cooperation and Development. (2017). OECD Skills Outlook 2017-Skills and Global Value Chains. http://www.oecd.org/education/skills-beyond-school/oecd-skillsoutlook-2017-9789264273351-en.htm.
  • Palchyk, A. O., Lutsyk, I. B., & Burega, N. V. (2022). Project-oriented approach to the study of robotics according to the concept of STEM education. Journal of Physics: Conference Series, 2288 (2022), Article 012011. doi:10.1088/1742-6596/2288/1/012011
  • Pantova, M.L., Aguirre-Munoz, Z., & Hunt, E.M. (2015). Developing an engineering identity in early childhood, American journal of engineering Education, 6(2), 61-68.
  • Park, H., Byun, S., Sim, J., Han, H. S., & Baek, Y. S. (2016). Teachers‟ perceptions and practices of STEAM Education in South Korea. EURASIA Journal of Mathematics, Science and Technology Education, 12(7), 1739-1753 https://doi.org/10.12973/eurasia.2016.1531a.
  • Razi, A., & Zhou, G. (2022). STEM, iSTEM, and STEAM: What is next? International Journal of Technology in Education (IJTE), 5(1), 1-29. https://doi.org/10.46328/ijte.119.
  • Riegle-Crumb, C., Morton, K., Nguyen, U., & Dasgupta, N. (2019). Inquiry-based instruction in science and mathematics in middle school classrooms: Examining its association with students’ attitudes by gender and race/ethnicity. AERA Open, 5(3), 1-17. https://doi.org/10.1177/2332858419867653.
  • Rothschild, K., Cohen, Marvin, Moeller, B., Dubitsky, B., Marshall, N., & McLeod, M. (2018). Learning to Look, Looking to Learn, K-12 STEM Education, 4(4), 421-428.
  • Sahin, A., Ayar, M.C., & Adiguzel, T. (2014). STEM Related After-School Program Activities and Associated Outcomes on Student Learning, Educational sciences: Theory & practice, 14(1), 329-321.
  • Saricam, U., & Yildirim, M. (2021). The effects of digital game-based STEM activities on students ‘interests in STEM fields and scientific creativity: Minecraft case. International Journal of Technology in Education and Science (IJTES), 5(2), 166-192. https://doi.org/10.46328/ijtes.136.
  • Sirinterlikci, A., Zane, L., & Sirinterlikci, A. L. (2009). Active learning through toy design and development. Journal of Technology Studies, 35(2), 14-22. 
  • Sokolowska, D., Meyere, J., Folmer, E., & Rovsek, W. (2014). Balancing the needs between training for future scientists and broader societal Needs – SECURE project research on mathematics, science and technology curricula and their implementation, Science Education International, 25(1), 40-51.
  • Temirton, G., Kharipova, R.E., & Kistaubayeva, A.K. (2023). The effect of STEM application on learning history and culture based on photo-documents in museums. IJEMST, 11(1), 17-36. https://doi.org/10.46328/ijemst.2824.
  • Teo, T. W., & Choy, B. H. (2021). STEM Education in Singapore. In O. S. Tan, E. L. Low, E. G. Tay, & Y. K. Yan (Eds.), Singapore Math and Science Education Innovation: Beyond PISA (PP. 43-59). Springer. https://www.researchgate.net/publication/353717524_STEM Education in Singapore.
  • Tunc, C., & Bagceci, B. (2021). Teachers' Views of the implementation of STEM approach in secondary schools and the effects on students. Pedagogical Research, 6(1), Article em0085. https://doi.org/10.29333/pr/9295.
  • Waters, C., & Orange, A. (2022). STEM-driven school culture: Pillars of a ransformative STEM approach. Journal of Pedagogical Research, 6(2), 72-90. https://dx.doi.org/10.33902/JPR.202213550
  • Wyse, D., Hayward, L., & Pandya, J. (Eds). (2016). The SAGE handbook of curriculum, Pedagogy and assessment. sage. 
  • Zee, M., & Koomen, H. M. (2016). Teacher self-efficacy and its effects on classroom processes, student academic adjustment, and teacher well-being: A synthesis of 40 years of research. Review of Educational research, 86(4), 981–1015.
  • Zimmer, K. E., McHatton, P.A., Driver, M. K., Datubo-Brown, C. A., & Steffen, Ch. (2018). Innovative Communities: Embedding Special Education Faculty in Science Methods Courses. Teacher education quarterly, 45(4), 73-92.